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One-dimensional moving polarons with extended coherent states
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Abstract. The general properties of one-dimensional large Fröhlich polarons in motion are investigated
with the previous extended coherent states where two-phonon correlations are considered. As a result, the
polaron energy, velocity, effective mass, and average number of virtual phonons as a function the polaron
total momentum are evaluated in a wide range of the coupling constant. In addition, rich information about
virtual phonons emitted by the electron in motion is obtained. More importantly, some intrinsic features
of 1D moving polarons are presented for the first time, which may also be suited to moving polarons in
more than one dimensions.

PACS. 71.38.+i Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron and phonon-
phonon interactions

1 Introduction

The problem of the one dimensional (1D) polaron has at-
tracted much attention in the last decade for both its
theoretical and practical interest. First, it is technologi-
cally possible to confine electrons in one direction [1] (i.e.,
quantum-well-wires), and it had been reported that a 1D
polaron emerges in the linear conjugative organic polymer
conductors cis- and trans-polyacetylene ((CH)x) [2]. Sec-
ond, it is well known that the polaron effect is enhanced
by reduced dimensionality [3–6], thus it can be selected
as a extreme model to study the polaron physics. Third,
due to the simplicity of the mathematics in 1D systems,
some essential features of polarons and bipolarons in 1D
could be clearly exhibited [7–13], which could supply a
qualitative estimation for the polaron in more than one
dimension.

In the modern literature, numerous investigations were
devoted to the properties of static polarons. However, to
our knowledge, only a little work [14–16] had been done
about the dynamics of polarons in motion, which is also
of great theoretical and practical importance. It is well
known that the wave function and the energy-momentum
relation of moving polarons are the fundamental ones
in the calculation of the S-matrix in the scattering the-
ory, which had been further developed to be the very fa-
mous Chew-Low scattering theory in fundamental parti-
cle physics [17]. In addition, the properties of dynamics
of polarons have a close relation with the experimentally
accessible quantities like the drift velocity, the Hall factor,
and the mobility.

The aim of the present paper is to extensively study
the properties of 1D moving polarons at zero tempera-
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ture. The Hamiltonian selected in this paper is just that
of the usual free one-dimensional polaron which has been
used by many authors [7–13]. Within the framework of our
earlier effective approach [9,18], where the phonon state
is taken to be the extended coherent state, we can present
a detailed investigation of the general properties of 1D
moving polarons, such as the dependencies of the polaron
energy, effective mass, velocity, the virtual phonon num-
ber, and the distribution of the phonon density on the
polaron momentum in the intermediate-coupling regime.
Self-consistent analyses of the obtained results are also
presented.

2 General formalism of two-phonon
correlation

Of the various intermediate-coupling polaron theories, ex-
cept the Feynman path integral method and its exten-
sions, most of them were developed on the basis of the
pioneering work by Lee, Low, and Pines (LLP) [19], as
does our previous scheme in this field [9,18]. Below we
shall briefly summarize the main elements of our general-
ized method and refer the reader to reference [9] for the
details.

The Hamiltonian large 1D Fröhlich polaron is given
by [7–13]:

H =
1

2m
p2 +

∑
q

~ω0a
†
qaq +

∑
q

v(aqe
iqx + a†qe

−iqx),

v = ~ω0

( ~
2mω0

) 1
2
(2α

L

) 1
2

(1)

where m is the electron band mass, ω0 is the frequency of
the LO phonons, a†q and aq are respectively the creation
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and annihilation operators of the LO phonons with the
wave vector q, and L is the length of the crystal lattice.
Here the coupling constant α is equivalent to α′ = lim

n→1

α
n−1

(α is the standard dimensionless electron-phonon coupling
constant) in reference [8]. In doing so we can get the finite
values of some observables such as energy and mass for
finite value of α. The coupling constant αop defined in
reference [7] is equal to α/2π in the present paper.

First, performing the well-known LLP transforma-
tion [19] to the Hamiltonian (1), we have the following ex-
pression for the Hamiltonian in units of 2m = ~ = ω0 = 1

H = (Q−
∑
q

qa†qaq)
2 +

∑
q

a†qaq +
∑
q

v(a†q + aq),

v =

√
2α

L
(2)

where Q is the egenvalues of the total polaron momentum∏
= p +

∑
q qa

†
qaq. It is conserved and regarded as a c-

number, since the Hamiltonian is translationaly invariant.
For convenience we write Hamiltonian (2) in the following
form

H = Q2 +
∑
q

(1− 2Qq + q2)a†qaq +
∑
q

v(a†q + aq)

+
∑
q1,q2

q1q2a
†
q1a
†
q2aq1aq2 , (3)

here are only the creation and annihilation operators of
phonons and the polaron momentum Q. The last term is
the recoil term.

Next, we take the wave function of phonons in the new
representation as the following extended coherent state
form, straightforwardly [9]

|〉 = |〉0 +
∑
q1,q2

b2(q1, q2)a†q1a
†
q2 |〉0,

|〉0 =
∏
q′

e
α(q′)a†

q′ | 0〉,

aq |〉0 = α(q) |〉0, (4)

where | 0〉 is the phonon vacuum state, b2(q1, q2) is the
interchanging symmetrical function of q1 and q2. It is im-
plied that the correlation between wave vectors of two
subsequently emitted phonons is under consideration in
equation (4). Substitution of equation (4) into Schrödinger
equation H |〉 = E |〉, followed by collecting together the
terms in (a†), (a†)1, and (a†)2, and neglecting (a†)3 |〉0-
and (a†)4 |〉0-terms produces
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a†q1a

†
q2
|〉0. (5)

Comparing the coefficients of the terms of (a†)0 |〉0,
(a†)1 |〉0 , and (a†)2 |〉0 in both sides of equation (5) we
have

E =
∑
q

vα(q) +Q2, (6)

v + (1− 2Qq + q2)α(q) + 2
∑
q′

vb2(q′, q) = 0, (7)

{∑
q

vα(q) −E +Q2 + [2− 2Q(q1 + q2) + q2
1 + q2

2]

+2q1q2

}
b2(q1, q2) = −q1q2α(q1)α(q2). (8)

According to equations (6, 8) it can be seen that b2(q1, q2)
satisfies

b2(q1, q2) = −
q1q2α(q1)α(q2)

2− 2Q(q1 + q2) + (q1 + q2)2
, (9)

inserting equation (9) into equation (7) we get the self-
consistent equation obeyed by α(q)

α(q) = −
v

1− 2Qq + q2

+
2

1− 2Qq + q2

∑
q′

v′
qq′α(q)α(q′)

2− 2Q(q + q′) + (q + q′)2
·(10)

Introducing the function

F (q) =
( αL

2π2

)1/2

α(q), (11)

and transforming the summation into an integral, then
equations (6, 10) can be respectively simplified to

E =

∫ ∞
−∞

F (q)dq +Q2, (12)

F (q) = −
α

π(1− 2Qq + q2)
+

2

1− 2Qq + q2

×

∫ ∞
−∞

dq′
qq′F (q)F (q′)

2− 2Q(q + q′) + (q + q′)2
· (13)

It can be noticed from equation (12) that F (q) is the dis-
tribution function of the 1D polaron energy E(α,Q) in
terms of q, and equation (13) is its self-consistent integral
equation, which can be solved by the iteration method.

It is recalled from our previous paper [9] that all static
polaron observables (Q = 0) obtained by the first two
iterations in equation (13) are identical to those within
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the fourth-order perturbation theory [8]. Moreover, the ex-
act self-consistent calculation of equation (13) yields very
good polaron results in the intermediate-coupling regime
compared to the very famous path integral ones [7]. It
should be pointed out that the 3D polaron energies ob-
tained within this approach [22] are in good agreement
with the exact Monte-Carlo ones [20] for a wide cou-
pling range, which should illustrate the high quality of
our method in polaron physics.

In the next section, based on the same formulation,
setting Q 6= 0, we can further study the general properties
of moving polarons.

3 Numerical results and discussions

Before performing any numerical calculations, we will
show that the non-degenerate perturbation theory, such as
the second-order Rayleigh-Schrödinger perturbation the-
ory, gives the wrong results for polarons in Q→ 1 or > 1.
Within this method, we can easily obtain

E(α,Q) =

∫ ∞
−∞
−

α

π(1− 2Qq + q2)
dq +Q2, (14)

For convenience, we rewrite the above equation as

[(E(α,Q) −Q2]/α = −
1

π

∫ ∞
−∞

1

1−Q2 + x2
dx, (15)

It is found that this integral diverges if Q→ 1 or > 1. But
this property for Q → 1 or > 1 is not the intrinsic prop-
erty in the the moving problem of large polarons, which
had been well demonstrated in reference [15] for the 3D
polaron and in reference [16] for the 2D polaron. In ref-
erences [15,16], the authors had shown that for Q → 1
or Q > 1 one has to use degenerate perturbation theory,
such as Wigner-Brillion perturbation theory, to obtain the
correct energy momentum relation. Their remarks are also
true for the 1D polarons. Therefore, all the results in the
present paper, which can cover those by the second-order
Rayleigh-Schrödinger perturbation theory, should be re-
stricted to Q < 1. The problem of moving 1D polarons
for Q → 1 or > 1 will be attempted by Wigner-Brillion
perturbation theory in a forthcoming paper.

We will present some numerical results to discuss
the behavior of the distribution of phonon number, total
phonon momentum, the average of virtual phonon num-
bers, polaron energy, velocity, and effective mass with non-
zero polaron momentum in a wide coupling range.

3.1 Distribution of phonon density

Given values of coupling constants is α and Q, solving for
equation (13), we can determine the phonon wave function
(4) by means of equations (9, 11), then, the distribution
of the density of the phonon number (DPN) in terms of
the phonon momentum q can be calculated by

n(q) =
〈| a†qaq |〉

〈|〉
· (16)

Fig. 1. The density of phonon number n(q) as a function of the
phonon momentum q with different total polaron momentum
Q at coupling constant α = 1.

This expression is rather complicated and not presented
here. After tedious but straightforward calculation, we dis-
play the numerical results in Figures 1 and 2. By the way,
for a 1D system, eonly by the abscissa can we readily in-
dicate the phonon momentum vector q.

It is shown in Figure 1 that, for given coupling con-
stant, such as α = 1.0, the value of DPN increases with the
increase of the total polaron momentum Q if the phonon
momentum q is along the Q-direction, and decreases when
in the opposite direction. It follows that the phonons emit-
ted by the electron along the moving direction outnum-
ber those in the opposite direction. It is also easily found
from each curve that a peak appears around q = Q, and
the value of DPN decreases rapidly while away from the
peak. This is to say, the contribution to the polaron ob-
servables are mainly attributed to the phonons with mo-
mentum around Q, although we usually take account of
the phonons with all momentum q in the calculation of ob-
servables. Besides, the maximum value of DPN increases
with Q-value, and the displacement is approximately pro-
portional to Q for all Q-values.

From Figure 2, it can be seen that, for a given po-
laron total momentum, such as Q = 0.2, the value of
DPN increases with the increasing coupling constant α for
all phonon momentum q, and the height of the peak for
DPN is approximately proportional to α for all α−values.
It is physically reasonable, because the enhancement of
the electron-phonon coupling results in many more vir-
tual phonons emitted by the electron.

It is of some interest to note from both Figures 1 and
2 that for the most part phonons are in the momentum
regime |q − Q| ≤ 2, and are only weakly sensitive to the
modulation of α and Q.
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Fig. 2. The density of phonon number n(q) as a function of
the phonon momentum q with different coupling constant α at
total polaron momentum Q = 0.2.

Fig. 3. The phonon momentum PT vs. the total polaron mo-
mentum Q relation with α = 0.5 and 1, respectively.

3.2 Total phonon momentum

By means of the results for n(q) obtained in equation (16),
the total phonon momentum can be readily calculated by

PT =
∑
q

qn(q). (17)

In Figure 3 we present the total polaron momentum de-
pendence of the total phonon momentum PT with different
coupling constant α. It is clear that the PT increases with
Q and α. All curves of PT versus Q for a given α show a
nonlinear behavior. According to the relation PT +Pe = Q
where Pe refer to the momentum of the electron, it is
learned that as the Q or α increases, the proportion of the

Fig. 4. The dependence of the total average number of vir-
tual phonons N on total polaron momentum Q with different
coupling constants α.

phonon momentum occupied in the total polaron momen-
tum increases gradually.

3.3 Average number of virtual phonons

The average number of virtual phonons can be calculated
by the formulae N =

∑
q n(q). Alternatively, it can also

be obtained from the energy E(α,Q) directly,

N =
(

1−
3

2
α
∂

∂α
−

1

2
Q
∂

∂Q

)
E(α,Q) (18)

which has ever been proved exactly in reference [21]. The
latter method is more concise than the former one, and is
employed in the present calculation.

We exhibit the numerical results in Figure 4. For a
given coupling constant, it is demonstrated that N in-
creases with Q in a nonlinear way. This tendancy is much
more evident with larger α.

It is very necessary, by Figure 4, to link the average
number of virtual phonons in the phonon field with the
valid range of our method, where only two-phonon corre-
lations are taken into account.

From the highest curve, we find that when α = 2.0,
the total phonon number N is greater than 2 for all Q, so
the present method where only two-phonon correlations
are taken into account fails to describe this system, and a
improved state where correlations among wave vectors of
more than 2 phonons in the field are under consideration
should be proposed; this is not attempted here. Thus we
should restrict the following discussion of the energy, ve-
locity, and effective mass up to α = 1.5. Even for α = 1.5,
from the second higher curve, one can see the value of
N becomes greater than 2 when Q > 0.6, therefore our
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Fig. 5. The dependence of the polaron energy E(α,Q) on the
total momentum Q with different coupling constants α (the
corresponding E(α,Q) − Q2 vs. Q relations are indicated by
dashed lines).

method can not yield reasonable results for Q > 0.6 ei-
ther. If one really wishes to study some observables in the
region of Q > 0.6, one might find that the calculated re-
sults deviate drastically from the common tendancy and
diverge rapidly.

3.4 Polaron energy

By means of equations (12, 13), the dependence of the po-
laron energy on the polaron total momentum with differ-
ent coupling constants are plotted in Figure 5. It is shown
from all the curves that the energy only increases slightly
with increasing Q, in a nonparabolic way. Although the
polaron kinetic energy considerably increases with Q as
Q2, the decrease of the electron-phonon coupling energy
caused by the resultant increase of the total phonon num-
ber will depress this effect in the total energy, and keep the
energy almost unchanged with Q. This point can also be
clearly demonstrated in the following quantitative analy-
sis.

It is known that the energy for Fröhlich optical po-
larons in the intermediate-coupling regime can be ex-
panded in powers of α [22]. From equations (12, 13), we
can obtain the energy expansion analytically as

E(α,Q) = Q2 +
∞∑
i=1

Ei(Q)αi (19)

where Ei(Q) is independent of α. The coefficient of the
leading term E1(Q) is just identical to the left-hand side
of equation (15). It is evident that E1(Q) decreases with
increasing Q, and then it will offset the increasing polaron

Fig. 6. The total momentum Q dependence of two coefficients
E1(Q) and E2(Q) in the energy expansion.

kinetic energy Q2 to a considerable degree. The numerical
results for E1(Q) are displayed in Figure 6.

In principle, we can also get the expansions of the en-
ergy including all subsequent terms. But only the coeffi-
cient E2(Q) of α2-terms is exactly calculated, as had been
proven in our previous paper [9]. Here, we also present the
numerical results for E2(Q) in Figure 6. It is very inter-
esting to note that E2(Q) increases smoothly with Q, in
contrary to the behavior of the Q-dependence of E1(Q).
This is to say, the energy originated from the recoil term
increases with the total polaron momentum. We have also
found that the coefficients of terms after the α2-term dis-
play a similar behavior. Although these coefficients are
incompletely calculated, it is to expected that their un-
known exact results will show similar features because
they are all originated from the recoil term. However, all
these coefficients of the terms after the leading term in the
energy expansions are, at least, two orders of magnitude
smaller than that of the leading term, so they do not play
an important role in modifying the E(Q) behavior.

We can also explain the reason that the E(Q) curves
in Figure 5 are truncated at a critical value of Qc, which
is smaller than 1. According to equation (19), for a given
α, whether this series converges or not depends on the Q
dependence of the coefficient of Ei(Q). It is observed in
Figure 6 that although E2(Q) is considerably smaller than
E1(Q) for a wide region of Q values, it diverges before the
divergence of E1(Q) in larger Q values. Similar discus-
sions may also be suited for higher-order coefficients. So
in practical calculations, beyond a critical value of Qc, the
results based on solving equations (12, 13) deviate drasti-
cally from the common tendance and diverge rapidly. The
decrease of the critical value of Qc with the larger α can
be naturally explained by equation (19). This analysis is
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also consistent with the discussions of the total phonon
number in Section 3.3.

In Figure 5, we have also presented the curves of
E(α,Q)−Q2 versus Q. It is learned from the two groups
of curves that two inequalities E(α,Q = 0) < E(α,Q 6= 0)
and E(α,Q 6= 0) − Q2 < E(α,Q = 0) are always met.
These are just two theorems proved by Gerlach et al. [23]
(note the unit m = 1 in Ref. [19] and the unit m = 2 in this
paper). It follows that our treatment is trully convincing
and reliable.

3.5 Velocity and effective mass

In order to study the dynamics of the 1D polarons in mo-
tion, it is also significant to evaluate the polaron velocity
and the effective mass as a function of the momentum Q.
The definition of polaron velocity is is given by [16]

V (Q) =
∂E

∂Q
· (20)

Figure 7 indicates these numerical results. It is learned
form this figure that for a given polaron momentum,
the velocity decreases with the coupling constant. This
is physically reasonable, because the enhancement of the
electron and lattice interaction will hinder the motion of
the polarons. This tendancy may hint at a localization
of polarons in the strong-coupling regime, which, how-
ever, is beyond the scope of the present intermediate-
coupling theory. More interestingly, we find that the ve-
locity monotonously increases with the total polaron mo-
mentum in α = 0.5 and 1.0 curves, and a non-monotonous
behavior is clearly shown in the lowest curve for α = 1.5.
Thus it is safe to say that the velocity grows more slowly
with larger Q, if not decreasing. Generally, the polaron
velocity should increase with Q for fixed α. On the other
hand, the average number of virtual phonons does also
increase with increasing Q, as stated before, then the
electron-phonon coupling becomes enhanced, this effect
may depress the trend of the velocity to increase. This
may account for the downward trend of the curves for
α = 0.5 and 1.0. Especially for relatively a large coupling
constant, say α = 1.5, this effect is substantially strength-
ened and results in the decline of the velocity with larger
Q-value as shown in Figure 7. In addition, the nonlinearity
of the velocity-momentum relation clearly exhibits a non-
parabolic dependence of the energy on the momentum.

The polaron effective mass m∗(Q) can be obtained
with the uses of the polaron velocity

m∗(Q) =
2Q

V (Q)
(2m = 1). (21)

The numerical results are presented in Figure 8. One may
find that m∗(Q) increases with the total polaron momen-
tum, and this trend is more pronounced with larger α. It
is consistent with the fact that the increase of α and Q
leads to the increase of the total phonon numbers, which
in turn raise the effective mass.

Fig. 7. The dependence of the polaron velocity V (Q) on the
total momentum Q with different coupling constants α.

Fig. 8. The dependence of the polaron effective mass m∗(Q)
on the total momentum Q with different coupling constants α.

4 Conclusions

The previous effective method to static polarons is suc-
cessfully generalized to study the dynamics of 1D po-
larons. As a result, we have obtained some properties of
moving polarons, such as the distribution of the density of
phonon numbers, the total phonon momentum, the total
phonon number, the ground-state energy, the velocity, and
the effective mass. The main results are listed as follows.

1 The phonons emitted by the electron along the polaron
moving direction outnumber those in the opposite di-
rection. The maximum value of DPN appears around
q = Q, and away from the peak the value of DPN
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decreases rapidly. In addition, the value of DPN in-
creases with larger α.

2 The proportion of the phonon momentum occupied in
the polaron total momentum increases with α and Q.

3 The total phonon number increases with the momen-
tum Q, which is more evident with larger coupling con-
stant. This quantity can act as a criterion to judge the
range of validity of the present method.

4 The energy increases slightly with increasing Q in a
nonparabolic way. Moreover, two inequalities proved
by Gerlach et al. [23] are readily checked in our numer-
ical calculations. Alternatively, the coefficient of the
α2-term in the energy expansion increases smoothly
with Q, just contrarily to that of the leading term.

5 For given polaron momentum, the polaron velocity
V (Q) decreases with the coupling constant, and for
given coupling constant, the polaron velocity grows
more slowly with larger Q, if not decreasing.

6 The effective mass of moving polarons m∗(Q) increases
with the total momentum Q, and this trend is more
pronounced with larger α.

It should be stressed that the above conclusions are
completely self-consistent. Compared to the famous the-
orem by Gerlach et al., we can say that our treatment
is effective and reliable. By the way, if setting Q=0, all
the results for static 1D polarons can be recovered. So we
believe our results within the present scheme are reliable
in both the weak- and intermediate-coupling regimes. The
comparison to other approaches can not be made in the
present paper owing to the fact the investigations on 1D
moving polarons are still lacking to date. To the best of
our knowledge, we study, for the first time, the 1D mov-
ing polarons and clearly present some intrinsic features,
which may also be suited to describe moving polarons in
more than one dimension.

Finally, we would like to point out that the present
paper is only intended to preliminarily obtain some
essential features of moving polarons within a simple but
well-used model in a theoretical sense. Hamiltonian (1)
in this paper is too simple to represent real quasi-one-
dimensional systems, such as polarons in quantum wire,
where the confining potential should be presented, several
existing sub-bands should be discussed, and the two bulk
confining phonon modes as well as two interface phonon
modes should be considered. The extensions to this more
realistic system will be presented in a forthcoming paper.
On the other hand, if we neglect the inter-band transition
and only take bulk-phonon approximation (i.e. neglecting
the coupling of the electron to other phonon modes),
the Hamiltonian of polarons in a quantum wire with
symmetrical potential may be approximately mapped into

Hamiltonian (1) used in this paper, due to the fact that
this system is of axial symmetry (we take the wire direc-
tion as the axis). Then, in our opinion, the general proper-
ties of moving polarons in such a system are not essentially
different from those obtained in the present paper in some
aspects.

This work was supported by the National Centre for Research
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Foundation of China (No. 596048).
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